TR-2004009: A Reduction of the Matrix Eigenproblem to Polynomial Rootfinding via Similarity Transforms into Arrow-Head Matrices

نویسنده

  • Victor Y. Pan
چکیده

We modify the customary approach to solving the algebraic eigenproblem. Instead of applying the QR algorithm to a Hessenberg matrix, we begin with the recent unitary similarity transform into a triangular plus rank-one matrix. Our novelty is nonunitary transforms of this matrix into similar arrow-head matrices, which we perform at a low arithmetic cost. The resulting eigenproblem can be effectively solved by the known algorithms. We also outline some directions for further work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chebyshev rootfinding via computing eigenvalues of colleague matrices: when is it stable?

Computing the roots of a scalar polynomial, or the eigenvalues of a matrix polynomial, expressed in the Chebyshev basis {Tk(x)} is a fundamental problem that arises in many applications. In this work, we analyze the backward stability of the polynomial rootfinding problem solved with colleague matrices. In other words, given a scalar polynomial p(x) or a matrix polynomial P (x) expressed in the...

متن کامل

New Bases for Polynomial-Based Spaces

Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...

متن کامل

Eigen-solving via reduction to DPR1 matrices

Highly effective polynomial root-finders have been recently designed based on eigen-solving for DPR1 (that is diagonal + rankone) matrices. We extend these algorithms to eigen-solving for the general matrix by reducing the problem to the case of the DPR1 input via intermediate transition to a TPR1 (that is triangular + rank-one) matrix. Our transforms use substantially fewer arithmetic operatio...

متن کامل

The Variational Nystrom method for large-scale spectral problems

Spectral methods for dimensionality reduction and clustering require solving an eigenproblem defined by a sparse affinity matrix. When this matrix is large, one seeks an approximate solution. The standard way to do this is the Nyström method, which first solves a small eigenproblem considering only a subset of landmark points, and then applies an out-of-sample formula to extrapolate the solutio...

متن کامل

Quadratic Eigenproblems Are No Problem

High-dimensional eigenproblems often arise in the solution of scientiic problems involving stability or wave modeling. In this article we present results for a quadratic eigenproblem that we encountered in solving an acoustics problem, speciically in modeling the propagation of waves in a room in which one wall was constructed of sound-absorbing material. EEcient algorithms are known for the st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016